2 research outputs found

    Intra-Cranial Recordings of Brain Activity During Language Production

    Get PDF
    Recent findings in the neurophysiology of language production have provided a detailed description of the brain network underlying this behavior, as well as some indications about the timing of operations. Despite their invaluable utility, these data generally suffer from limitations either in terms of temporal resolution, or in terms of spatial localization. In addition, studying the neural basis of speech is complicated by the presence of articulation artifacts such as electro-myographic activity that interferes with the neural signal. These difficulties are virtually absent in a powerful albeit much less frequent methodology, namely the recording of intra-cranial brain activity (intra-cranial electroencephalography). Such recordings are only possible under very specific clinical circumstances requiring functional mapping before brain surgery, most notably in patients that suffer from pharmaco-resistant epilepsy. Here we review the research conducted with this methodology in the field of language production, with explicit consideration of its advantages and drawbacks. The available evidence is shown to be diverse, both in terms of the tasks and the cognitive processes tested and in terms of the brain localizations being studied. Still, the review provides valuable information for characterizing the dynamics of the neural events occurring in the language production network. Following modality specific activities (in auditory or visual cortices), there is a convergence of activity in superior temporal sulcus, which is a plausible neural correlate of phonological encoding processes. Later, between 500 and 800 ms, inferior frontal gyrus (around Broca’s area) is involved. Peri-rolandic areas are recruited in the two modalities relatively early (200–500 ms window), suggesting a very early involvement of (pre-) motor processes. We discuss how some of these findings may be at odds with conclusions drawn from available meta-analysis of language production studies

    Asymmetric function of theta and gamma activity in syllable processing: an intra-cortical study

    Get PDF
    Low-gamma (25-45 Hz) and theta (4-8 Hz) oscillations are proposed to underpin the integration of phonemic and syllabic information, respectively. How these two scales of analysis split functions across hemispheres is unclear. We analyzed cortical responses from an epileptic patient with a rare bilateral electrode implantation (stereotactic EEG) in primary (A1/BA41 and A2/BA42) and association auditory cortices (BA22). Using time-frequency analyses, we confirmed the dominance of a 5-6 Hz theta activity in right and of a low-gamma (25-45 Hz) activity in left primary auditory cortices (A1/A2), during both resting state and syllable processing. We further detected high-theta (7-8 Hz) resting activity in left primary, but also associative auditory regions. In left BA22, its phase correlated with high-gamma induced power. Such a hierarchical relationship across theta and gamma frequency bands (theta/gamma phase-amplitude coupling) could index the process by which the neural code shifts from stimulus feature- to phonological- encoding, and is associated with the transition from evoked to induced power responses. These data suggest that theta and gamma activity in right and left auditory cortices bear different functions. They support a scheme where slow parsing of the acoustic information dominates in right-hemisphere at a syllabic (5-6 Hz) rate, and left auditory cortex exhibits a more complex cascade of oscillations, reflecting the possible extraction of transient acoustic cues at a fast (~25-45 Hz) rate, subsequently integrated at a slower, e.g. syllabic one. Slow oscillations could functionally participate to speech processing by structuring gamma activity in left BA22, where abstract percepts emerge
    corecore